Desingularization of Schubert varieties and orbit closures of prehomogeneous vector spaces of commutative parabolic type

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Induced conjugacy classes, prehomogeneous varieties, and canonical parabolic subgroups

We prove the properties of induced conjugacy classes, without using the original proof by Lusztig and Spaltenstein in the unipotent case, by adapting Borho’s simpler arguments for induced adjoint orbits. We study properties of equivariant fibrations of prehomogeneous affine spaces, especially the existence of relative invariants. We also detect prehomogeneous affine spaces as subquotients of ca...

متن کامل

COMPUTATION OF CHARACTER SUMS AND APPLICATIONS TO PREHOMOGENEOUS VECTOR SPACES 1 with an appendix ” L - FUNCTIONS OF PREHOMOGENEOUS VECTOR SPACES

For an arbitrary number field K with ring of integers OK , we prove an analogue over finite rings of the form OK/p of the Fundamental Theorem on the Fourier transform of a relative invariant of prehomogeneous vector spaces, where p is a big enough prime ideal of OK and m > 1. In the appendix, F. Sato gives an application of the Theorems 1.2 and 1.5 (and Theorems A, B, C in [4]) to the functiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 1998

ISSN: 0019-3577

DOI: 10.1016/s0019-3577(98)80022-0